Script generated by TTT

Title: Petter: Compilerbau (20.04.2015)
Date: Mon Apr 20 14:13:35 CEST 2015
Duration: 98:35 min

Pages: 51

Organizing

Dates:

Lecture: Mo. 14:15-15:45
Tutorial: You can vote on two dates via moodle

Exam:
° OnelExam in the summer,l none in the winter
@ Exam managed via TUM-online
@ Successful (50% credits) tutorial exercises earns 0.3 bonus

58

TECHNISCHE UNIVERSITAT MUNCHEN
FAKULTAT FUR INFORMATIK

T

000—0Q0—
00—000—

000—0—Q
[FO0000—

Compiler Construction |

Dr. Michael Petter

SoSe 2015

Organizing

@ Master or Bachelor in the 6th Semester with 5 ECTS
@ Prerequisites
@ Informatik 1 & 2
@ Theoretische Informatik
@ Technische Informatik
@ Grundlegende Algorithmen
@ Delve deeper with
@ Virtual Machines
@ Programmoptimization
@ Programming Languages
@ Praktikum Compilerbau
@ Seminars
Materials:

@ TTT-based lecture recordings

o[the siides |

@ Related literature list online (= Wilhelm/Seidl/Hack Compiler
Design)

@ Tools for visualization of virtual machines (VAM)

@ Tools for generating components of Compilers [JFlex:CUP)

2/58

Preliminary content

Basics in regular expressions and automata

Specification and implementation of scanners

Reduced context free grammars and pushdown automata
Bottom-Up Syntaxanalysis

Attribute systems

Typechecking Feqists

@ Codegeneration for statk machines

@ Regisier assiagnment

@ Basic Optimization

Interpreter

Program

[Interpreter J Output

Pro:

No precomputation on program text necessary
= no/small Startup-time

Con:

Program components are analyzed multiple times during the
execution
= longer runtime

58

/58

Topic:

Introduction

Concept of a Compiler

Program [Compiler]
Code ;
[Machine J
Input
Two Phases:

@ Translating the program text into a machine code
@ Executing the machine code on the input

Code

Qutput

Compiler

A precomputation on the program allows
@ a more sophisticated variable management
@ discovery and implementation of global optimizations

Disadvantage
The Translation costs time

Advantage

The execution of the program becomes more efficient
= payoff for more sophisticated or multiply running programs.

Compiler

The Analysis-Phase is divided in several parts:

Program code

—

<

Analysis

58

/58

Compiler

general Compiler setup:

Program code

&

P Analysis ®)

e =

CEJ [Int. Representation| =

O Synthesis @
Code

Compiler

The Analysis-Phase is divided in several parts:

Program code

—

s

Scanner

lexicographic Analysis:
Partitioning in tokens

Token-Stream

Analysis

Compiler

The Analysis-Phase is divided in several parts:

Program code

L

Scanner lexicographic Analysis:
Partitioning in tokens

Token-Stream

Parser syntactic Analysis:
| Detecting hierarchical structure

Analysis

Syntax tree

i f{)?

‘”/1 L)3 4 ;

k =

YRICH
) /
/ /\

IL:S vé\s

ded b

/\ N
£

T

Compiler

The Analysis-Phase is divided in several parts:

Program code

L

Scanner lexicographic Analysis:
Partitioning in tokens

w Token-Stream
2]
> Parser syntactic Analysis:
g Detecting hierarchical structure
< | syntax tree |
Type semantic Analysis:
Checker... Infering semantic properties

(annotated) Syntax tree

Compiler

The Analysis-Phase is divided in several parts:

Program code

—

s

Scanner lexicographic Analysis:
Partitioning in tokens

0 Token-Stream
(2]
> Parser syntactic Analysis:
g Detecting hierarchical structure
< | syntax tree |
Type semantic Analysis:
Checker... Infering semantic properties

(annotated) Syntax tree

58

58

The lexical Analysis

Program code |—=| Scanner »{Token-Stream

11/58

The lexical Analysis

Xxyz | + | 42

Scanner

Y

xyz + 42

— -

@ A Token is a sequence of characters, which together form a unit.
@ Tokens are subsumed in classes. For example:
— Names (ldentifiers) e.g. xyz, pi, ...
— Constants e.g. 42,3.14, "abc”, ...
— Operators e.g. +, ...
— reservedtermse.g. if, int,..

11/58

The lexical Analysis

xyz+42 —= Scanner —|xyz]+|42]
The lexical Analysis
I 0C
xyz+42 ——> Scanner | xyz | + | 42

@ A Token is a sequence of characters, which together form a unit.
@ Tokens are subsumed in classes. For example:
— Names (ldentifiers) e.g. xyz, pi, ...
— Constantse.g. 42, 3.14, "abc”, ...
— Operators e.g. +, ...
— reservedtermse.g. if, int,..

11/58

The Lexical Analysis

Classified tokens allow for further pre-processing:

@ Dropping]irr ragments|e.g. ppacing, Comments,...
@ Separating Pragmas, i.e. directives vor the compiler, which are
not directly part of the program, like include-Statements;
@ Replacing of Tokens of particular classes with their meaning /
internal representation, e.g.
— Constants;
—» Names: typically managed centrally in a Symbol-table, evt.

compared to reserved terms (if not already done by the
scanner) and possibly replaced with an index.

= Siever

The Lexical Analysis

Classified tokens allow for further pre-processing:

@ Dropping irrelevant fragments e.g. Spacing, Comments,...

@ Separating Pragmas, i.e. directives vor the compiler, which are
not directly part of the program, like include-Statements;

@ Replacing of Tokens of particular classes with their meaning /
internal representation, e.g.

— Constants;

— Names: typically managed centrally in a Symbol-table, evt.
compared to reserved terms (if not already done by the
scanner) and possibly replaced with an index.

= Siever

12/58

12/58

The lexical Analysis

I 0 C

- e[+ [

Xyz + 42 Scanner

@ A Token is a sequence of characters, which together form a unit.
@ Tokens are subsumed in classes. For example:
— Names (ldentifiers) e.g. =xvz, pi, ..
—+ Constants e.g. 42, 3.14,,
— Operators e.g. +, ...
— reserved terms e.qg.

if, int, ...

11/58

The Lexical Analysis

Discussion:

@ Scanner and Siever are often combined into a single component,
mostly by providing appropriate callback actions in the event that
the scanner detects a token.

@ Scanners are mostly not written manually, but generated from a

specification.
Scanner

Specificatior Generator

13/58

The Lexical Analysis - Generating: The lexical Analysis
... Inour case:
I 0O C
xyz+42 —=| Scanner —).-
Specification Generator Scanner
@ A Token is a sequence of characters, which together form a unit.
@ Tokens are subsumed in classes. For example:
~» Names (Identifiers) e.g. [xvz, pi, .k
— Constants e.g. 3.14, "abc”, ...
— Operators e.g.
— reservedtermse.g. | if,|int,...
The Lexical Analysis - Generating: The Lexical Analysis - Generating:
.. inour case: ... In our case:
0O
. -0
Specification Generator Scanner 01[1-9][0-9]* Generator [1_}]'«/@
[0-9]
Specification of Token-classes: Regular expressions;
Generated Implementation: Finite automata + X

Chapter 1:
Basics: Regular Expressions

15/58

Regular Expressions

Basics
@ Program code is composed from a finite alphabet X of input
characters, e.g. Unicode
@ The sets of textfragments of a token class is in general regular.

@ Regular languages can be specified by regular expressions.

Definition Regular Expressions

The set &y of (non-empty) regular expressions
is the smallest set & with:

@ ¢ & (e anew symbol not from 3);
@ acé foral acy;

° (8]”'82),(8&2),868 if ej,ep €l

Stephen Kleene

16/58

Regular Expressions

Basics
@ Program code is composed from a finite|alphabet X | of input
characters, e.g. Unicode
@ The sets of textfragments of a token class is in general regular.

@ Regular languages can be specified by regular expressions.

Regular Expressions

... Example:
((a-b*)a)
(] b)
((a-b)(a-b))

16/58

17/58

Regular Expressions

... Example:

((a-b*)a)
(a | b)
((a-b)(a-b))

Attention:

@ We distinguish between characters

a,0,%)..

(:‘:)s'"

ang

Meta-symbols

e To avoid (ugly) parantheses, we make use of

Operator-Precedences:

*

”

and omit “-

Regular Expressions

Specifications need Semantics
...Example:

> > |

Specification Semantics

abab
alb

ab*a

{abab}

{a, b}
{ab"a | n > 0}

For ecéx
inductively by:

[€]
[a]
e*]
| €] |(:’g

I
=~ e A,

we define the specified language

17/58

18/58

Regular Expressions

... Example:
((a-b")a)
(al|b)
((a-b)(a-b))
Attention:

@ We distinguish between characters «,0, §,... and Meta-symbols
G 1y)

@ To avoid (ugly) parantheses, we make use of
Operator-Precedences:

®

> > |
and omit *”
@ Real Specification-languages offer additional constructs:
7 = (ele)
T o= (e-e")

[{at)

and omit “e

Keep in Mind:

@ The operators
of words:

(_)*: u, -

are interpreted in the context of sets

(L =
L L, =

{wi...wg | k>0,w; € L}
{wiwy | wy € Li,wy € Ly}

17/58

19/58

Keep in Mind:

@ The operators (_)*,U,- are interpreted in the context of sets
of words:
(L)
Ly- L

{wl...wk|k20,w,-6L}
{wiwz | wy € Li,wy € Ly}

@ Regular expressions are internally represented as annotated
ranked trees:

(able)” = j

ol

Inner nodes: Operator-applications;
Leaves: particular symbols or e.

19/58

Regular Expressions

Example: Identifiers in Java:

le = [a—-zA-Z_\$]
di [0-9]
Id = {le} ({le} | {di})~

Float {di}« (\-{di@{di}\-) ditk{ (e|E) (\+[\-)2{di}+)

=_ e

20/58

Regular Expressions

Example: Identifiers in Java:

le = [a—zA-7_\S]
di)
Id = {I€T ({le} | {di})~=

Chapter 2:

Basics: Finite Automata

20/58

21/58

Finite Automata

Example:

Finite Automata

Definition Finite Automata

A non-deterministic finite automaton
(NFA) is atuple A = (0, ¥, 0, I, F) with:

Dana Scott

Michael Rabin

0 a finite set of states;

] a finite alphabet of inputs;

I C O the set of start states;

F C O the set of final states and

) the set of transitions (-relation)

For an NFA, we reckon:

Definition Deterministic Finite Automata

Given § : 0 x ¥ — © a function and |/| = 1, then we call the NFA A
deterministic (DFA).

22/58

23/58

Finite Automata

Definition Finite Automata

A non-deterministic finite automaton
(NFA) is a tuple A = |(Q= 3,0, 1, F)|with:

i
Dana Scott

Michael Rabin

]_Q a finite set of states; |

» a finite alphabet of inputs;

I C O | the set of start states;

F C O the set of final states and |

) the set of transitions (-relation)

Finite Automata

@ Computations are paths in the graph.
@ Accepting computations lead from [to F.

@ An accepted word is the sequence of lables along an accepting
computation ...

L (=3
*./

'
\)

.
[
[
\

23/58

24/58

Finite Automata

Definition Finite Automata

A non-deterministic finite automaton
(NFA) is a tuple A = (0, ¥, 4, . F) with:

. !
Michael Rabin Dana Scott

0] a finite set of states;

)Y a finite alphabet of inputs;

IC O the set of start states;

F C @ the set of final states and

) the set of transitions (-relation)

For an NFA, we reckon:

Definition Deterministic Finite Automata

Given ¢ : O x ¥ — Q a function and |I| = 1, then we call the NFA A
deterministic (DFA).

Finite Automata

Definition Finite Automata

A non-deterministic finite automaton
(NFA) is atuple A = (0, ¥, 0, I, F) with:

. I .
Michael Rabin Dana Scott

0 a finite set of states;

] a finite alphabet of inputs;

I C O the set of start states;

F C O the set of final states and

) the set of transitions (-relation)

For an NFA, we reckon:

Definition Deterministic Finite Automata

Given § : 0 x ¥ — © a function and |/| = 1, then we call the NFA A
deterministic (DFA).

23/58

23/58

Finite Automata

Example:

Nodes: States;
Edges: Transitions;
Lables: Consumed input;

Finite Automata

@ Computations are paths in the graph.
@ Accepting computations lead from 6)’ to @

@ An-accepted word'is the sequence of lables along an accepting

co

22/58

24/58

Finite Automata

@ Computations are paths in the graph.
@ Accepting computations lead from [to F.

@ An accepted word is the sequence of lables along an accepting
computation ...

Chapter 3:
Converting Regular Expressions to NFAs

24/58

26/58

Finite Automata

Once again, more formally:
@ We define thé transitive closure 6%

(p,e,py € o
poaw, g) €0 it (p,

0" characterizes for two states p and ¢ the words, along each
path between them

of § as the smallest set ¢’ with:

)ed and w,q) € 0.

@ The set of all accepting words, i.e. A’s accepted language can be
described compactly as:

-z oo 0ep o

In linear time from Regular Expressions to NFAs

~ &8s

Thompson’s Algorithm

Produces O(n) states for regular expressions of
length ».

Ken Thompson

25/58

27/58

